A wavelet Whittle estimator of generalized long-memory stochastic volatility
نویسندگان
چکیده
We consider a k-GARMA generalization of the long-memory stochastic volatility (LMSV) model, discuss the properties of the model and propose a wavelet-based Whittle estimator for its parameters. Its consistency is shown. Monte Carlo experiments show favorable properties of the proposed method with respect to the Whittle estimator and a wavelet-based approximate maximum likelihood estimator. An application is given for the Microsoft stock, modeling the intraday seasonal patterns of its realized volatility.
منابع مشابه
Wavelet Transform for Estimating the Memory Parameter in Long Memory Stochastic Volatility Model
We consider semiparametric estimation of memory parameter in long memory stochastic volatility models. It is known that log periodogram regression estimator by Geweke and Porter-Hudak (1983) results in significant negative bias due to the existence of the spectrum of non-Gaussian noise process. Through wavelet transform of the squared process, we effectively remove the noise spectrum around zer...
متن کاملEstimation of Generalized Long-Memory Stochastic Volatility for High-Frequency Data
We consider the generalized long-memory stochastic volatility (GLMSV) model, a relatively general model of stochastic volatility that accounts for persistent (or longmemory) and seasonal (or cyclic) behavior at several frequencies. We employ the decorrelating properties of discrete wavelet packet transform (DWPT) to provide a wavelet-based approximate maximum likelihood estimator that allows fo...
متن کاملThe Local Whittle Estimator of Long Memory Stochastic Volatility
We propose a new semiparametric estimator of the degree of persistence in volatility for long memory stochastic volatility (LMSV) models. The estimator uses the periodogram of the log squared returns in a local Whittle criterion which explicitly accounts for the noise term in the LMSV model. Finite-sample and asymptotic standard errors for the estimator are provided. An extensive simulation stu...
متن کاملWavelet Analysis of Nonlinear Long–Range Dependent Processes. Applications to Financial Time Series⋆
We present and study the performance of the semiparametric wavelet estimator for the long–memory parameter devised by Veitch and Abry (1999). We compare this estimator with two semiparametric estimators in the spectral domain, the local Whittle (LW) estimator developed by Robinson (1995a) and the “log– periodogram” (LP) estimator by Geweke and Porter–Hudak (1983). The wavelet estimator performs...
متن کاملEstimating long memory in volatility
We consider semiparametric estimation of the memory parameter in a model which includes as special cases both the long-memory stochastic volatility (LMSV) and fractionally integrated exponential GARCH (FIEGARCH) models. Under our general model the logarithms of the squared returns can be decomposed into the sum of a long-memory signal and a white noise. We consider periodogram-based estimators ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistical Methods and Applications
دوره 20 شماره
صفحات -
تاریخ انتشار 2011